Accueil > Pour en savoir plus > Physique > "Et si la vie obéissait à la Physique Quantique" par René Trégouët

"Et si la vie obéissait à la Physique Quantique" par René Trégouët

Compléments par Jacques Hallard

samedi 5 septembre 2020, par Trégouët René



ISIAS Physique quantique

Et si la vie obéissait à la Physique Quantique : le sénateur français René Trégouët cite (notamment) les travaux des physiciens israéliens

Compléments sur les impulsions laser ultra-brèves et documentation actualisée sur la physique quantique

Article de René TRÉGOUËT diffusé le 05 juin 2020 par ‘israelscienceinfo.com’ - Photo – Source : https://www.israelscienceinfo.com/physique/et-si-la-vie-obeissait-a-la-physique-quantique-le-senateur-rene-tregouet-cite-les-physiciens-israeliens/

René Trégouët - Conseiller général, sénateur, créateur du Syndicat intercommunautaire des Monts du Lyonnais (Simoly), rapporteur de la recherche au Sénat, Chevalier de la Légion d’honneur, on ne compte plus les casquettes de René Trégouët, biologiste passionné (Le Progrès). Sur son site consacré à la recherche et à l’innovation, RTFlash, ce visionnaire relate les avancées majeures de la physique quantique auxquelles ont participé, entre autres, des physiciens israéliens.

RTFlash. L’édification de la physique quantique fut certainement l’une des plus grandes aventures scientifiques de tous les temps et représente un saut conceptuel majeur dans notre connaissance intime du réel et des lois qui gouvernent la Nature. De 1900 à 1927, une génération de physiciens et théoriciens géniaux, parmi lesquels Einstein, Planck, Bohr, De Broglie, Dirac, Born, Pauli, Schrödinger et Heisenberg, pour ne citer que les principaux, construisit une nouvelle représentation de l’infiniment petit et du monde des particules et des atomes. Le parachèvement théorique de cette nouvelle physique, souvent déroutante et particulièrement abstraite, fut le principe d’indétermination d’Heisenberg (1927) et la fonction d’onde, pressentie par De Broglie, en 1924 et formalisée par l’Autrichien Schrödinger en 1927.

Photo du Sénateur René Trégouët

En moins de 30 ans, les physiciens avaient dû se rendre à l’évidence, au grand dam d’Einstein qui, bien qu’ayant joué un rôle majeur dans l’émergence de la mécanique quantique (avec la découverte de l’effet photoélectrique qui lui vaudra son prix Nobel), n’accepta jamais complètement les immenses conséquences épistémologiques et philosophiques de cette étrange physique qui impose ses lois déroutantes dans le domaine de l’infiniment petit.

A cette échelle atomique et subatomique, les lois et règles de la physique classique cessent de s’appliquer et il devient impossible d’isoler de manière précise, dans le temps et dans l’espace, les « objets », que représentent les particules et les atomes. Ceux-ci n’existent plus indépendamment de l’observateur et, en outre, ils se comportent, selon les méthodes employées pour les observer, tantôt comme des ondes, étendues dans l’espace, tantôt comme des particules ponctuelles…

Le principe d’intrication, propriété la plus étrange

Mais la propriété sans doute la plus étrange de la physique quantique est le principe d’intrication, qui veut que, lorsque deux particules, deux photons par exemple, sont issues d’une même source et sont ensuite séparées, même par d’immenses distances, elles restent liées entre elles, de sorte que, toute mesure sur l’une de ses particules aura une influence immédiate sur le comportement de l’autre !

Il fallut cependant attendre 1982 pour qu’une série d’expériences mémorables, menées sous la direction du grand physicien français Alain Aspect, à l’Institut d’optique d’Orsay, démontre de manière incontestable la réalité de cet étrange principe d’intrication quantique.

C’est au cours de la même période, à partir des années 1980, que quelques scientifiques de renom, comme Roger Penrose ou John Eccles (Prix Nobel de Médecine 1964), commencèrent à poser l’hypothèse imaginant que les lois de la physique quantique ne se limitaient peut-être pas au monde des particules et se manifestaient probablement, sous des formes qui restaient à découvrir, dans le domaine de la biologie, qu’il s’agisse des processus d’échange et de transformation d’énergie, ou même des mécanismes de production et d’échanges d’informations à l’œuvre dans notre cerveau.

https://www.israelscienceinfo.com/wp-content/uploads/2020/06/intrication-quantique-300x131.png

Depuis une dizaine d’années, physiciens, chimistes et biologistes n’ont cessé de repousser les limites de manifestation des phénomènes quantiques, et ont montré, par exemple, que, dans certaines conditions expérimentales précises, on pouvait observer la nature ondulatoire de la matière, non seulement pour les particules, mais aussi pour les atomes, et même pour de grosses molécules organiques.

Des israéliens ont participé à une avancée décisive

Photo du Pr Ori Cheshnovsky

Dans ce domaine, une avancée décisive a été accomplie en 2012, quand une équipe internationale réunissant des scientifiques autrichiens, israéliens (Pr Ori Cheshnovsky, Université de Tel Aviv) et suisses, a mis au point un nouveau dispositif très sophistiqué, conçu pour révéler d’éventuelles franges d’interférences pour des molécules massives. Ces chercheurs ont réussi à concevoir un dispositif expérimental composé d’un ensemble de fentes parallèles reprenant le célèbre principe des fentes (imaginé et testé par Thomas Young en 1804), ainsi qu’un système optique capable de réaliser l’image de chaque molécule et de la localiser sur l’écran avec une précision de dix nanomètres (voir Nature, 25 mars 2012).

Ces scientifiques ont ainsi pu constater qu’après avoir traversé le dispositif de nanofentes, les molécules venaient frapper une plaque en verre éclairée par un laser, ce qui permettait de réaliser un film vidéo, à l’aide d’une caméra CCD ultrasensible. Et sur ce film, on pouvait voir de manière très nette la présence caractéristique de fanges d’interférence (alternance de bandes sombres et claires) formées par ces molécules, en l’occurrence de la phtalocyanine, un colorant synthétique utilisé dans la fabrication des encres et peintures, ce qui démontrait sans ambiguïté que ces objets, pourtant bien plus massifs et volumineux que des particules, avaient manifesté, eux-aussi, un comportement ondulatoire. (voir vidéo plus bas).

En 2007, les physiciens Graham Fleming, Gregory Engel, avaient déjà montré que les Bacteriochlorophylles, des pigments photosynthétiques présents dans les bactéries sulfureuses vertes étaient capables de cohérence quantique, dans des conditions de très basses températures (-196 °) pour optimiser le transfert de l’énergie lumineuse absorbée. Quelques années plus tard, la même équipe alla plus loin, en montrant cette fois qu’on pouvait également observer ce phénomène de cohérence quantique pendant un temps-record (300 femtosecondes) à la température, beaucoup plus « chaude » de 4°C.

Plus récemment, une autre équipe, dirigée par Gregory Scholes, de l’Université de Toronto, est allée encore plus loin, en montrant que, dans les algues Chroomonas et Rhodomonas, les cellules réceptrices qui captent les photons savent utiliser les propriétés quantiques pour optimiser les transferts d’énergie le long des pigments moléculaires. Ces travaux ont également montré que la cohérence quantique, dans ce cas précis, était maintenue pendant 400 femtosecondes (4 × 10-13 seconde) à température ambiante, ce qui était, jusqu’alors, considéré comme impossible…

Enfin, il y a quelques jours, une équipe internationale de recherche de l’Université de Vienne a publié une étude montrant la présence de franges d’interférence, avec des molécules de gramicidine, un antibiotique naturel composé de 15 acides aminés (Voir Nature).

https://www.israelscienceinfo.com/wp-content/uploads/2020/06/peptide-bon-300x140.png

Pour mettre en évidence ce comportement quantique, les scientifiques ont eu recours à une technologie de pointe : ils ont utilisé des impulsions laser ultra-brèves pour manipuler et transporter ces molécules à très basse température, sans les détériorer. Grâce à ce dispositif ingénieux, les chercheurs ont alors pu observer que les molécule de gramicidine produisait des franges d’interférence associées à une longueur d’onde de 350 femtomètres (1 femtomètre est égal à 10-15 mètres), soit exactement la longueur d’onde prévue par la théorie quantique…

Fort de ces résultats, ces chercheurs se disent persuadés qu’avec ces nouveaux dispositifs expérimentaux très sensibles, il sera bientôt possible de démontrer que l’ensemble des molécules biologiques, protéines, enzymes, ADN, expriment des propriétés quantiques encore ignorées, ce qui ouvre d’immenses et passionnantes perspectives de recherche et jette un nouveau pont entre le monde de la physique et celui de la biologie.

La neurobiologie et les neurosciences s’intéressent également à la dimension quantique que pourrait revêtir le fonctionnement de notre cerveau et de notre système nerveux. Le physicien Matthew Fisher est par exemple persuadé que les capacités et propriétés extraordinaires de notre cerveau ne pourront être pleinement comprises qu’en prenant en compte les lois de la physique quantique qui se manifestent au niveau de son fonctionnement atomique et moléculaire.

Matthew Fisher, contrairement à ses prédécesseurs, notamment Penrose et Eccles, a revu ses ambitions à la baisse, Il ne prétend pas démontrer une nature quantique de la conscience, mais cherche, dans un premier temps, à mettre en lumière l’existence de certains phénomènes quantiques dans certains mécanismes et processus biochimiques relativement simples, qui se déroulent dans notre cerveau.

Dans cette perspective, l’angle d’attaque de Matthew Fisher concerne les raisons de l’efficacité thérapeutique du lithium, toujours inexpliquée, sur certains troubles psychiatriques ou cognitifs. Fisher pose l’hypothèse que la physique quantique pourrait bien expliquer cette action incomprise du lithium sur notre cerveau.

En effet, les noyaux atomiques possèdent une propriété quantique spécifique, le spin. Le spin peut se définir comme le moment cinétique propre du noyau, ou, pour simplifier et être plus concret, sa capacité de rotation sur lui-même. Le spin ne peut prendre que certaines valeurs « discrètes », correspondant à des multiples entiers ou demi-entiers de la constante de Planck.

Selon Fisher, grâce à son spin bas (1/2), un noyau lithium est suffisamment protégé des perturbations électromagnétiques ambiantes dans le cerveau pour éviter la décohérence quantique pendant de longues minutes, ce qui expliquerait sa capacité d’action. Mais le lithium n’est pas présent naturellement dans le cerveau, ce qui n’est pas le cas de l’acide phosphorique, constitué d’atomes de phosphore dont le noyau possède un spin de ½, lui permettant précisément de rester cohérent plusieurs minutes.

Fisher pense qu’il existe très probablement de nombreuses réactions chimiques dans le cerveau, susceptibles de produire des états d’intrication quantique entre spins de noyaux. Parmi ces réactions, il en a identifié une qui l’intéresse particulièrement. Il s’agit de celle qui implique une enzyme, la pyrophosphatase. Au cours de cette réaction, la liaison entre deux ions phosphates est brisée, ce qui produit deux ions phosphates séparés. Au cours de ce processus, les noyaux de ces ions devraient, en théorie, connaître un état d’intrication quantique. Fisher veut à présent démontrer, sur le plan expérimental, son hypothèse, ce qui lui permettrait de prouver que l’action thérapeutique du lithium sur le cerveau a bien un fondement quantique.

Comme le souligne Fisher, « Si depuis 3,5 milliards d’années, la vie a appris à utiliser les propriétés quantiques pour rendre aussi efficace la photosynthèse chlorophyllienne, pourquoi n’aurait-elle pas également cherché à exploiter les lois de la physique quantique pour améliorer l’efficacité de notre cerveau au cours de notre longue évolution, donnant ainsi à notre espèce un avantage compétitif décisif  ? »

Fisher souligne également que notre cerveau n’est pas seulement capable, pour une consommation d’énergie dérisoire, au regard de celle de n’importe quel ordinateur, de réaliser des calculs très complexes, il est également apte à produire, évaluer, comparer instantanément des scénarios imaginaires, face à un problème imprévu, et surtout à donner un sens, une intention aux actions qu’il conçoit, ce qui le distingue radicalement d’un ordinateur, même surpuissant, qui ne sait pas ce qu’il fait et n’est pas conscient de son existence.

Pour que notre cerveau possède une telle capacité à comprendre le réel et à agir effacement sur son environnement, il est donc raisonnable d’imaginer qu’il puisse fonctionner à un niveau quantique, ou du moins, exploiter les lois de la physique quantique pour réaliser certaines opérations de conceptualisation ou de représentation hautement complexes.

Il se pourrait bien que la matière, la vie et la conscience soient finalement toutes gouvernées par les étranges lois de la physique quantique, ce qui n’exclut pas, bien sûr, l’existence et l’émergence d’autres niveaux d’organisations, régis par d’autres lois, spécifiques au vivant. On le voit, la recherche et le dévoilement progressif de la dimension quantique de la vie et des organismes vivants, loin de conduire à un nouveau réductionnisme, éclairent d’une lumière nouvelle la prodigieuse évolution du vivant vers une complexité toujours plus grande, jusqu’à voir l’émergence d’une espèce singulière entre toutes, homo sapiens, capable de reconstruire et de comprendre sa propre genèse, et d’imaginer sa destinée, en regardant les étoiles.

René TRÉGOUËT – Sénateur honoraire – Fondateur du Groupe de Prospective du Sénat 5/06/2020 pour RTFlash

Israël Science Info - Le magazine de la recherche, de l ... www.israelscienceinfo.com › ... - Le magazine de la recherche, de l’innovation, de l’industrie et des coopérations internationales. Nos parutions Newsletter A la Une Qui nous sommes Partenaires Sponsors Contact

http://www.ashdodcafe.com/wp-content/uploads/2013/12/logo-Israel-science-info-en-fran%C3%A7ais.jpg

Source : https://www.israelscienceinfo.com/physique/et-si-la-vie-obeissait-a-la-physique-quantique-le-senateur-rene-tregouet-cite-les-physiciens-israeliens/

Retour au début du document

Voir des informations sur René TRÉGOUËT – Sénateur honoraire >https://fr.wikipedia.org/wiki/Ren%C3%A9_Tr%C3%A9gou%C3%ABt

> https://www.senat.fr/senateur/tregouet_rene86047k.html

Retour au début du document

Compléments


Voir l’invisible à l’aide d’impulsions laser ultra-brèves - Vidéo 05 :21

Auteur : ABRAHAM Emmanuel- Professeur de Physique à l’Université de Bordeaux et chercheur au Laboratoire Ondes et Matière d’Aquitaine (LOMA–UMR CNRS 5798), dans le domaine de l’optique et des lasers (sources lasers femtosecondes spectroscopie ultra-rapide, rayonnement terahertz). Responsable de la Licence Physique-Chimie de l’Université de Bordeaux, il enseigne principalement l’optique et la physique des lasers à l’Université.

Comment déterminer le nombre de pages d’un livre sans les compter une à une, sans même les toucher, et cela en un temps très court ?

C’est à ce genre de questions (mais à bien d’autres aussi) qu’Emmanuel Abraham est capable de répondre. Le sujet qu’il étudie concerne les interactions matière-rayonnement. Il utilise des lasers puissants, à impulsions ultracourtes, de l’échelle des femtosecondes, une femtoseconde équivalent à un millionième de milliardième de seconde !… Ce type de laser, au contact de graphite, génère des ondes téra Hertz que l’on peut visualiser sur un écran. Cette onde révèle un maximum dans son tracé qui apparait à un temps précis. Si ensuite l’on interpose sur le trajet de l’onde un obstacle tel qu’un assemblage de feuilles de papiers comme celles composant un livre, on observe alors que le maximum de l’onde est décalé dans le temps ; ce décalage est proportionnel au nombre de feuilles de papier. Bien étalonné, on peut alors en déduire le nombre exact de feuilles, ou de pages d’un livre. Simple, non ?

Emmanuel Abraham est Professeur à l’Université de Bordeaux et développe ses recherches dans l’équipe Photonique et MAtériaux du Laboratoire Ondes et Matière d’Aquitaine

Logo LOMA 3 Site du LOMA

Ce document a été réalisé dans la cadre de « Physique des objets du quotidien », un MOOC coordonné par Ulysse Delabre, Maître de Conférences en physique à l’Université de Bordeaux, et développé par la Mission d’Appui à la Pédagogie et à l’Innovation (MAPI) de l’Université de Bordeaux

Sourcde : https://www.canal-u.tv/video/universite_de_bordeaux/voir_l_invisible_a_l_aide_d_impulsions_laser_ultra_breves.20742

Retour au début du document


Documentation actualisée sur la physique quantique


Contenu de la rubrique :

A. Introduction à la Physique quantique selon Wikipédia

B. L’essentiel sur la mécanique quantique - Publié le 15 mai 2019 – Document ‘CEA’

C. [Histoire des sciences] La physique quantique et l’ordinateur quantique 22 mai 2019 – Vidéo 7:27 - CEA Recherche

D. Sciences - Physique quantique : cette expérience remet-elle en question notre réalité ? (Lire la bio) - Auteure : Emma Hollen Journaliste scientifique - Publié le 30/08/2020 – Document ‘.futura-sciences.com’

E. Sept idées fausses sur la physique quantique 31 mars 2019, 21:12 CEST


A. Introduction à la Physique quantique selon Wikipédia

Photo - Max Planck est considéré comme le père de la physique quantique. La constante de Planck, h \displaystyle h joue un rôle central dans la physique quantique, bien au-delà de ce qu’il imaginait lorsqu’il l’a introduite. Max Planck est considéré comme le père de la physique quantique. La constante de Planck, h \displaystyle h joue un rôle central dans la physique quantique, bien au-delà de ce qu’il imaginait lorsqu’il l’a introduite.

La physique quantique est l’appellation générale d’un ensemble de théories physiques nées au XXe siècle qui décrivent le comportement des atomes et des particules et permettent d’élucider certaines propriétés du rayonnement électromagnétique.

Comme la théorie de la relativité, les théories dites « quantiques » marquent une rupture avec ce que l’on appelle maintenant la physique classique, qui regroupe les théories et principes physiques connus au XIXe siècle — notamment la mécanique newtonienne et la théorie électromagnétique de Maxwell —, et qui ne permettait pas d’expliquer certaines propriétés physiques. La physique quantique recouvre l’ensemble des domaines de la physique où l’utilisation des lois de la mécanique quantique est une nécessité pour comprendre les phénomènes en jeu. La mécanique quantique est la théorie fondamentale des particules de matière constituant les objets de l’univers et des champs de force animant ces objets.

Sommaire

Retour au début du document

Retour au contenu de la documentation sur la physique quantique


B. L’essentiel sur la mécanique quantique - Publié le 15 mai 2019 – Document ‘CEA’

​Qu’est-ce que la mécanique quantique ? Pourquoi est-elle utilisée ? A quoi sert-elle ? Où la retrouve-t-on dans notre quotidien ? Petite introduction au monde quantique.

Qu’est-ce que la mécanique quantique ?

La physique classique décrit parfaitement notre environnement quotidien, mais devient inopérante à l’échelle microscopique des atomes et des particules. Les scientifiques doivent alors utiliser la mécanique « quantique » pour laquelle les quantités de matière ou d’énergie échangées ne peuvent plus prendre n’importe quelles valeurs mais seulement des valeurs discrètes ou « quanta ».
Par ailleurs, la physique classique décrit différemment un corpuscule (atome, particule) et une onde (lumière, électricité) tandis que la mécanique quantique ne les distingue plus. Pour elle, un photon, un électron ou même un atome sont à la fois une onde et un corpuscule.
Une onde-corpuscule peut se trouver dans une superposition d’états qui est une sorte de potentialité de tous ses états possibles. Un objet quantique peut ainsi avoir des probabilités différentes d’être ici ou là et on ne peut être certain qu’il est en un seul lieu que lorsqu’on effectue une mesure. Le processus de mesure impose à l’onde-corpuscule un état bien défini.

Vidéo La physique quantique, késako ? Voir dans la médiathèque 

Le Chat de Schrödinger

Le physicien Schrödinger a utilisé une image devenue célèbre pour mettre en avant le côté paradoxal d’objets dont on ne peut pas connaître l’état à tout moment. Il a imaginé un chat « quantique », enfermé dans une boîte sans fenêtre en présence d’un poison déclenché par un processus quantique. Tant que la boîte n’est pas ouverte, on ne sait pas si le processus quantique a déclenché le mécanisme, le chat est à la fois mort et vivant avec des probabilités dépendant du processus. Bien sûr, quand on ouvre la boîte le chat est soit mort, soit vivant. En regardant à l’intérieur, on fait une mesure qui nous permet de connaître l’état quantique du système.

Vidéo Le chat de Schrödinger Voir dans la médiathèque HD (requiert flash)

À quoi sert la mécanique quantique aujourd’hui ?

Plus concrètement, la mécanique quantique est un formalisme mathématique qui peut être utilisé par les chercheurs en nanosciences (chimie, optique, électronique, magnétisme, physique de l’état condensé) et par les physiciens des lois fondamentales de l’Univers (particules, noyau atomique, cosmologie).

Quelques effets sont emblématiques de la mécanique quantique :

  • L’effet laser repose sur une population d’atomes portés dans un même état excité et qui se désexcitent tous ensemble en émettant cette lumière intense. La transition des électrons d’un niveau d’énergie à un autre est un processus quantique.
  • La supraconductivité voit des électrons de même charge électrique s’apparier alors que deux charges électriques de même signe devraient se repousser.
  • L’effet tunnel permet à des électrons de franchir une « barrière » de potentiel ce qui est strictement interdit en physique classique.
  • Le spin est une propriété quantique sans équivalent classique qui est déjà exploitée dans les têtes de lecture des disques durs des ordinateurs.
    Des physiciens cherchent à exploiter la richesse des états quantiques et à maîtriser leur mesure dans la perspective encore lointaine d’un ordinateur quantique.

La mécanique quantique prédit des comportements inhabituel, dont l’effet tunnel est un bon exemple

La mécanique quantique prédit des comportements inhabituels, dont l’effet tunnel est un bon exemple. © Yuvanoé/CEA

Et demain, la mécanique quantique ?

Les théories décrivant trois des quatre interactions fondamentales de l’Univers sont développées dans le cadre de la mécanique quantique :

  • l’interaction forte qui lie les composants du noyau entre eux,
  • l’interaction faible à l’origine de certaines formes de radioactivité,
  • l’électromagnétisme qui régit les phénomènes lumineux, électriques et magnétiques.
    La quatrième interaction, la gravitation, est expliquée par la relativité. Jusqu’à présent, dans les domaines d’énergie et d’espace que l’homme a pu explorer, il n’a pas été nécessaire de « quantifier » la gravitation. De nombreux physiciens cherchent cependant à unifier ces deux théories pour embrasser les lois de l’Univers de manière plus simple et complète.


Mécanique quantique et relativité

En mécanique quantique, matière et énergie sont de même nature mais temps et espace sont différenciés. Dans la théorie de la relativité, le temps et l’espace constituent une seule grandeur – l’espace-temps - tandis que matière et énergie sont différenciées.

Voir aussi :

L’essentiel sur... l’ordinateur quantique

Clefs n°66 - Révolutions quantiques - juin 2018

Source : http://www.cea.fr/comprendre/Pages/physique-chimie/essentiel-sur-mecanique-quantique.aspx

Retour au début du document

Retour au contenu de la documentation sur la physique quantique


C. [Histoire des sciences] La physique quantique et l’ordinateur quantique 22 mai 2019 – Vidéo 7:27 - CEA Recherche

Découvrez en animation-vidéo l’histoire de la physique quantique : depuis la catastrophe ultraviolette jusqu’aux promesses de l’ordinateur quantique en passant par la première et la deuxième révolution quantique. Une animation-vidéo co-réalisée avec L’Esprit Sorcier. Pour en savoir plus sur la mécanique quantique : http://www.cea.fr/comprendre/Pages/ph... Pour en savoir plus sur l’ordinateur quantique : http://www.cea.fr/comprendre/Pages/no... Pour suivre nos vidéos : abonnez-vous à notre chaîne : https://www.youtube.com/user/CEAscien...

https://www.youtube.com/watch?v=HHW73jxX56g

Retour au contenu de la documentation sur la physique quantique

Retour au début du document

D.
Sciences - Physique quantique : cette expérience remet-elle en question notre réalité ? (Lire la bio)- Auteure : Emma Hollen Journaliste scientifique-Publié le 30/08/2020 – Document ‘.futura-sciences.com’

Une nouvelle expérience de physique quantique jette un nouveau pavé dans la mare de la réalité objective. Afin de ne pas laisser en reste ceux de nos lecteurs qui ne seraient pas familiers avec la physique quantique, nous reprenons tout de zéro, avec des termes simples.

https://i0.kolplay.com/8oHHRCIEMe0/1-w620.jpg

[EN VIDÉO] La mécanique quantique expliquée en vidéo Qu’est-ce que la mécanique quantique ? À quoi sert-elle ? Quel est son champ d’étude ? La réponse en vidéo ! 

Dans son livre The Character of Physical Law, le physicien Richard Feynman écrit : « Je pense pouvoir affirmer sans risque que personne ne comprend la mécanique quantique. » Si les ressorts de cette discipline encore jeune (à peine un siècle) questionnent profondément les rares esprits qui s’adonnent à son étude, l’on sait néanmoins que la physique quantique décrit avec une précision confondante les comportements les plus contre-intuitifs des atomes et des particules, posant souvent plus de questions qu’elle n’en résout. Bien qu’il ne fasse plus aucun doute que, pour le physicien classique, la mécanique quantique avance parfois à rebours du sens commun, la manière dont elle le fait demeure encore incertaine.

Néanmoins, une récente étude parvient aujourd’hui à apporter de nouveaux éléments de réponse que nous allons ici tenter d’expliquer dans les termes les plus simples et les plus clairs possibles.

« Être et ne pas être », disait le chat de Schrödinger

Pour les chercheurs travaillant en dehors du champ de la physique quantique, le monde possède deux qualités importantes. Il est à la fois :

  • réalistec’est-à-dire que la réalité est objective et ne dépend pas d’une mesure ou d’un observateur ;
  • déterministec’est-à-dire que la réalité n’est pas aléatoire mais le fruit d’un ensemble de variables produisant des résultats systématiques et prédictibles (pourvu que l’on dispose de toutes les informations nécessaires à sa compréhension).
    Or, la physique quantique nous apprend qu’il en va bien autrement en deçà d’une certaine échelle, dans le monde exotique des atomes et des particules, voire desmolécules. Imaginons qu’une particule, un peu comme un interrupteur, admette deux états possibles, que nous baptiserons 1 et 0 pour un maximum de simplicité. Si l’on en croit l’interprétation de Copenhague, tandis qu’un interrupteur ne peut être que dans un seul état à la fois (allumé ou éteint), la particule, elle, se trouve dans ce que l’on appelle une superposition d’états, c’est-à-dire à la fois 1 et 0. Cette superposition ne disparaît que lorsqu’un observateur décide de mesurer son état, causant ainsi un effondrement de la fonction d’onde. Cette première idée contredit la possibilité d’une réalité unique et objective pour notre particule, mais les choses ne s’arrêtent pas là.

En effet, toujours d’après la théorie quantique, la particule ne suit pas une logique déterministe mais probabiliste. On ne peut donc pas prédire l’état dans lequel elle sera, mais seulement calculer la probabilité d’obtenir un état ou un autre. Dans notre cas, et toujours par souci de simplicité, nous dirons que notre particule a une chance sur deux d’être dans l’état 1 ou 0.

Capture d’écran - Une illustration d’un interrupteur classique contre un interrupteur quantique imaginaire. © Fermilab 

L’effondrement est dans les yeux de celui qui regarde

Les scientifiques ignorent encore à ce jour par quel mécanisme la particule passe d’une superposition d’états à un état fixe. Certains ont suggéré que la fonction d’onde s’effondre au moment où la mesure est faite, d’autres encore que l’intervention d’un observateur conscient est nécessaire — cette dernière notion a amené certains à tordre la physique quantique pour lui faire dire que nous pouvions modifier la fabrique de la réalité par la simple force de notre esprit, ce qui, pour autant que nous sachions, est complètement erroné.

Aujourd’hui, les chercheurs travaillant avec des systèmes quantiques complexes savent qu’un simple coup de vent peut causer l’effondrement du fragile château de carte qu’est la superposition quantique, susceptible à l’interaction avec les particules présentes dans l’air. La question de ce qui fait la valeur d’une mesure ou d’un observateur demeure donc encore en suspens.

Particules intriquées et messagerie instantanée

Introduisons désormais une nouvelle dose d’exotisme en abordant la notion d’intrication quantique. Nous savons d’ores et déjà que lorsque nous mesurons l’état d’une particule quantique, nous avons 50 % de chance de trouver 1 ou 0. En calculant les probabilités pour la mesure de deux particules, nous obtenons donc le tableau suivant :

Mais les particules intriquées, elles, partagent une relation particulière. Liées l’une à l’autre (suite à une manipulation volontaire ou, plus rarement, accidentellement), elles forment un tout inséparable où l’état de l’une est dépendant de celui de l’autre. Plus simplement, les deux particules se trouvent chacune dans une superposition d’états (1 et 0) jusqu’à que l’une d’entre elles soit mesurée. Cette mesure cause un effondrement de la fonction d’onde simultané pour la paire, et chacune se fixe alors dans un état opposé, et ce, peu importe la distance qui les sépare. On obtient donc ce tableau :

Cela signifie qu’en théorie, si vous placez une particule sur la Lune et sa jumelle sur Terre, la mesure de la particule terrienne (donnant par exemple l’état 1) provoquerait l’effondrement de la fonction d’onde de sa jumelle lunaire (qui acquerrait alors l’état 0) au même instant. Ceux qui se souviennent encore de leurs cours de physique protesteront alors en affirmant que cela est impossible car rien, même l’information, ne voyage plus vite que la lumière (qui met 1,3 seconde à nous parvenir de la Lune). Et à cela nous répondrons... que vous avez parfaitement raison. Einstein n’était d’ailleurs pas le plus grand adepte de cette notion, qu’il surnommait la dérangeante (ou effrayante) action à distance.

Quand (Bell) sonne le glas

Dans les années 1960, le physicien John Bell décide d’en apprendre plus sur cette communication manifestement instantanée entre les particules intriquées. Il part ainsi de deux principes initiaux, tirés d’une vision classique du monde :

  • principe de localité  : les particules ne peuvent pas s’influencer mutuellement plus vite que la lumière ;
  • réalisme  : les particules suivent un fonctionnement déterministe (et non probabiliste) que nous peinons simplement à prédire à cause de variables cachées.
    Sur la base de ces deux postulats, Bell calcule l’ensemble des états possibles pour la mesure d’une paire de particules intriquées (dans un contexte un peu plus complexe que celui que nous avons présenté jusqu’ici) et obtient ainsi un seuil de corrélation théorique. Depuis, de nombreux « tests de Bell » ont été effectués dont les résultats ont infailliblement violé le seuil théorique calculé par Bell. Selon lui, une seule conclusion pouvait être tirée de ce constat : l’un de ses postulats de départ était faux. Mais lequel ?

Le paradoxe de Wigner

Faisons à présent une pause de quelques instants pour aborder une nouvelle expérience de pensée, proposée par le physicien Eugène Wigner à l’époque où Bell travaillait sur son théorème. Quelque peu agacé par les questions sans réponses posées par la physique quantique, Wigner décide de jeter un pavé supplémentaire dans la mare en exposant le paradoxe suivant.

Imaginons qu’un ami de Wigner se tient assis dans un laboratoire où il s’apprête à mesurer l’état d’une particule. Le physicien, quant à lui, se trouve à l’extérieur du laboratoire et n’a aucun moyen de savoir ce qu’il s’y passe. En appliquant les équations fournies par la mécanique quantique, nous savons que la particule se trouve dans une superposition des deux états (1 et 0) jusqu’à ce que l’ami de Wigner la mesure, causant à ce moment le fameux effondrement de la fonction d’onde. Mais ce n’est pas tout.

Dans notre expérience de pensée, l’ami de Wigner n’est pas le seul à effectuer une mesure. Wigner peut, à son tour, ouvrir la porte et demander à son ami quel résultat il a obtenu. Le laboratoire (et son ami à l’intérieur) est donc en quelque sorte contaminé par la particule et se retrouve lui aussi dans une superposition d’états tant que Wigner n’a pas eu sa réponse.

Wigner (le vrai, pas celui du paradoxe) pose alors la question suivante : quand l’effondrement de la fonction d’onde de la particule se produit-il ? au moment où son ami a pris connaissance du résultat ou lorsque ce dernier lui a été transmis ? Pour Wigner, la conscience de son ami suffisait à causer l’effondrement catégorique et définitif de la fonction d’onde, mais avait-il seulement raison ? Qu’en aurait-il été si son ami avait été un ordinateur ?

Photo - Le physicien Eugène Wigner, à l’origine du paradoxe de l’ami de Wigner. © ORNL History 

Symphonie pour quatre observateurs et deux particules

Venons-en désormais à l’expérience qui nous intéresse aujourd’hui. « Pour notre recherche, nous avons construit une version étendue du paradoxe de l’ami de Wigner, proposée pour la première fois par Časlav Brukner, de l’université de Vienne », écrit Eric Cavalcanti, coauteur de l’étude parue dans la revue Nature Physics. Dans ce nouveau scénario, nous faisons la connaissance d’Alice et Bob (dans le rôle de Wigner), de Charlie et Debbie (dans le rôle de son ami) et d’une paire de particules intriquées (dans le rôle de... la particule).

Charlie et Debbie se trouvent chacun dans leur propre laboratoire : tandis que Charlie a pour mission de mesurer la particule a de la paire intriquée, Debbie se charge de la particule b. (Rappelons que, conformément au principe d’intrication quantique, si Charlie mesure un état de 1, Debbie trouvera forcément 0 de son côté, et vice versa.) À l’extérieur, Alice et Bob (que nous qualifieront de superobservateurs) font chacun rouler un dé à trois faces (I, II, III) :

  • si le résultat est égal à I : le super-observateur ouvre la porte du laboratoire et demande à son acolyte quel résultat il a obtenu ;
  • si le résultat est égal à II ou III : le super-observateur laisse la porte fermée et choisit alors de mesurer la particule lui-même, en faisant fi du résultat obtenu par son acolyte.
    Les duos suivent cette procédure sans se préoccuper l’un de l’autre et, à la fin de l’expérience, Alice et Bob comparent leurs résultats afin de calculer le taux de corrélation pour l’ensemble des paires de particules. Tout est clair ? Maintenant, abordons brièvement et le plus simplement possible la manière dont les chercheurs s’y sont pris pour tester ce paradoxe expérimentalement.

La parenthèse pratique

Dans ce contexte plus concret, une paire de photons polarisés et intriqués est générée et passe par un système complexe de filtres, de prismes, de miroirs et de capteurs. La principale chose à comprendre est que le photon passe d’abord au niveau d’un filtre qui détermine sa trajectoire (par exemple gauche ou droite) en fonction de sa polarisation (1 ou 0). Il a ensuite deux options :

  • soit il poursuit sa route directement vers un interféromètre qui mesurera son état ;
  • soit il passe par un deuxième filtre qui annule l’effet du précédent avant que le photon ne parvienne à l’interféromètre.
    Ici, le premier filtre désigne l’acolyte, tandis que l’interféromètre prend la place du super-observateur. Dans le premier cas, décrivant la situation où le lancer de dé est égal à I, le résultat obtenu par le filtre/acolyte est directement transmis à l’interféromètre / super-observateur (la porte est ouverte). Dans le second, où le lancer de dé est égal à II ou III, l’observation de l’acolyte est en quelque sorte effacée, et le photon est mesuré directement par le super-observateur (la porte reste fermée). Dans l’expérience, le lancer de dé est généré aléatoirement pour chaque interféromètre, à chaque nouvelle paire de photons.

Voici ci-dessous une version très schématique d’une moitié de l’appareil, accompagnée de sa version originale et complète (on vous laisse nous dire laquelle vous préférez).

Une version simplifiée de l’expérience : en haut, le photon passe par un premier filtre (l’acolyte), puis rejoint directement l’interféromètre (super-observateur) ; en bas, le photon passe par un premier filtre (l’acolyte), puis poursuit sa route à travers un second filtre annulant l’effet du premier, pour finalement rejoindre l’interféromètre (super-observateur). © Emma Hollen 

La version originale de l’expérience montre l’installation expérimentale dans son ensemble : sur la droite, on observe les chemins suivis par les photons pour Bob et Alice. Le photon passe par une première série de filtres en bas (acolyte), puis, en fonction du résultat du « lancer de dés », est sélectivement dévié par un miroir mobile vers l’interféromètre (super observateur) ou poursuit sa route à travers un nouvel ensemble de filtres annulant l’effet des précédents, pour finalement rejoindre l’interféromètre (super-observateur). © Bong et al., Spie 

Trois postulats, avec un twist

Afin de confronter leurs résultats expérimentaux avec les prédictions de la physique classique, les chercheurs établissent leurs calculs théoriques sur trois postulats de base, formant ensemble un principe baptisé « amicabilité locale » par Cavalcanti :

  • absoluité des événements observés (AOE) : une fois la première observation faite, l’effondrement de la fonction d’onde est absolu est définitif, il n’y a pas de versions alternatives ou de modifications possibles ;
  • principe de localité : (rappel) les particules ne peuvent pas s’influencer mutuellement plus vite que la lumière ;
  • absence de super-déterminisme (NSD) : le libre arbitre et l’aléa sont préservés ; le résultat des lancers de dés, par exemple, ne saurait être influencé par un autre événement dans ou en dehors de l’expérience : il est entièrement aléatoire.
    Une fois le seuil de corrélation théorique calculé, l’équipe a mené pas moins de 90.000 tests. Comme elle s’y attendait, les corrélations obtenues expérimentalement violent systématiquement les postulats de Bell. Mais, plus intéressant encore, les résultats ne violent le principe d’amicabilité locale (remettant en cause au moins l’un des trois postulats de départ ci-dessus) que lorsque l’intrication est suffisamment forte : en perturbant partiellement l’harmonie des paires de photons, les chercheurs ont constaté qu’au-delà d’un certain seuil, les résultats empiriques rejoignent les prédictions.

Cette distinction permet de démontrer que les postulats de Bell et ceux de l’amicabilité ne sont pas équivalents. Afin d’obtenir des résultats théoriques en accord avec les mesures effectuées dans la réalité, il nous faudra donc abandonner au moins l’un des trois postulats posés par le principe d’amicabilité locale. Et les implications d’une telle découverte sont profondes.

Faudra-t-il mettre à jour notre réalité ?

Comme nous le disions au début de notre article, la mécanique quantique avance parfois à rebours des postulats édictés par le sens commun ; « l’avancée dans ce cas est que nous discernons un peu mieux quels postulats nous devons abandonner », commente Ken Wharton, un physicien de l’université de San José, qui n’a pas pris part à l’étude. En attendant que de nouveaux résultats expérimentaux nous fournissent de plus amples éléments de réponse, les théories continueront de foisonner, certains scientifiques affirmant que les événements futurs peuvent affecter des observations passées (rétrocausalité), que chaque observation provoque la naissance d’univers parallèle (hypothèse des multivers), ou encore qu’il n’existe pas de réalité objective. Prochaine étape pour les chercheurs : reproduire l’expérience à des échelles de grandeur supérieure afin de voir jusqu’où la théorie quantique tient bon, et si ses conclusions s’appliquent à notre niveau de perception.

Merci à tous les lecteurs qui auront suivi cet article jusqu’au bout ! Je tiens à remercier humblement Zeeya Merali, dont l’article, publié dans ‘Scientific American’, a permis de dissoudre toutes mes incertitudes sur ce sujet (n’en déplaise aux physiciens quantiques).

Pour en savoir plus !

Et si la réalité objective n’existait pas ? Article de Nathalie Mayer, publié le 19 novembre 2019 – « Pour la plupart d’entre nous, un fait est un fait. Il peut être prouvé et correspond à une réalité objective unique. Mais le monde de la physique quantique s’apprête une fois de plus à ébranler nos certitudes. Ses lois particulières autoriseraient la coexistence de plusieurs réalités différentes’.

«  Vous avez droit à votre opinion, mais pas à vos propres faits.  » C’est ce qu’avait déclaré à l’occasion d’une conférence de presse en fin d’année dernière, Paul Romer, prix Nobel d’économie 2018 pour ses travaux sur les vertus et les nuisances de l’activité économique sur le climat. Mais aujourd’hui, des chercheurs de l’université d’Édimbourg (Écosse) viennent remettre en cause cette affirmation. Selon eux, il existerait plus d’un seul monde objectif. D’un point de vue quantique, tout du moins.

Rappelons au préalable que la méthode scientifique repose par principe sur des observations et sur des mesures reproductibles. Un fait scientifique ne peut ainsi être qu’objectif et accepté par tous les observateurs. Car, dans notre monde, lorsqu’il arrive quelque chose, il arrive indéniablement quelque chose !

Dans le monde quantique, les observateurs jouissent d’un grand pouvoir

Rappelons qu’en revanche, dans le monde quantique, les observateurs jouissent d’un grand pouvoir. Il est en effet admis que le simple fait d’observer un système quantique provoque une sorte d’effondrement vers un état spécifique. Ainsi, une particule qui, selon la théorie, peut se trouver dans plusieurs états à la fois — les chercheurs parlent de superposition — choisit instantanément son camp dès qu’elle est observée.

L’expérience du chat de Schrödinger montre le pouvoir de l’observateur dans le monde quantique. Le chat en question, pris au piège dans une pièce fermée, doit en effet être considéré comme à la fois mort et vivant jusqu’à ce qu’il puisse être observé dans l’un ou l’autre de ces états. © Sonsedskaya, Adobe Stock 

Un ordinateur quantique et des photons pour démonter la réalité

En 1961, le physicien Eugène Wigner imagina une expérience de pensée intéressante. Il se demanda ce qu’il adviendrait si un observateur était lui-même observé. Dans une pièce fermée, un ami de Wigner effectue une mesure quantique. À l’extérieur de cette pièce, Wigner n’a pas accès au résultat de la mesure. Il en est réduit à décrire son ami et le système mesuré comme une superposition de tous les états possibles. Car les deux sont enchevêtrés. D’où le paradoxe. La réalité perçue par Wigner et son ami est différente. Pour en donner un exemple « concret », l’ami de Wigner saura si le chat de Schrödinger est mort ou vivant alors que pour Wigner, il restera à la fois mort et vivant.

Cette expérience de l’existence, dans l’univers quantique, de deux réalités objectives, a aujourd’hui pu être testée par les physiciens de l’université d’Édimbourg grâce à un ordinateur quantique constitué de trois paires de photons intriqués. Sur le principe proposé par Caslav Brukner, chercheur à l’université de Vienne (Autriche), de considérer deux couples « Wigner et son ami », les amis en question étant placés dans deux pièces différentes. La première paire de photons tient ainsi la place du système quantique mesuré. La deuxième paire figure les amis de Wigner et la troisième paire, enfin, les deux versions de Wigner lui-même.

Il aura fallu aux physiciens des semaines entières pour collecter suffisamment de données et arriver à la conclusion suivante : l’état du système mesuré par plusieurs observateurs peut être différent et ainsi, la mécanique quantique peut être incompatible avec la notion de faits objectifs. Mais ils soulignent toutefois que cette conclusion repose sur quelques hypothèses qui restent possiblement à valider. Comme le fait qu’un photon puisse être considéré comme un observateur.

Intéressé par ce que vous venez de lire ? - Abonnez-vous à la lettre d’information La quotidienne : nos dernières actualités du jour. Toutes nos lettres d’information

Haut du formulaire

L’article scientifique (en anglais)

A strong no-go theorem on the Wigner’s friend paradox

Vous aimez nos Actualités ? - Inscrivez-vous à la lettre d’information La quotidienne pour recevoir nos toutes dernières Actualités une fois par jour.

Futura, Explorer le monde

Futura sciences

Source : https://www.futura-sciences.com/sciences/actualites/physique-physique-quantique-cette-experience-remet-elle-question-notre-realite-78402/

Retour au début du document

Retour au contenu de la documentation sur la physique quantique

E.
Sept idées fausses sur la physique quantique 31 mars 2019, 21:12 CEST

Auteur : Julien BobroffPhysicien, Professeur des Universités, Université Paris-Saclay - Déclaration d’intérêts - Julien Bobroff est l’auteur de « Mon grand mécano quantique » cité dans l’article.

Partenaires - Université Paris-Saclay apporte des fonds en tant que membre fondateur de The Conversation FR. Voir les partenaires de ‘The Conversation France’ - Langues English

Nous croyons à la libre circulation de l’information - Reproduisez nos articles gratuitement, sur papier ou en ligne, en utilisant notre licence Creative Commons.

https://images.theconversation.com/files/266566/original/file-20190329-70986-3hp84.png?ixlib=rb-1.1.0&rect=0%2C0%2C1255%2C753&q=45&auto=format&w=926&fit=clipUne conférence grand public sur la physique quantique. Héloïse Chochois, « Infiltrée chez les physiciens », coll. « La physique autrement »

Depuis de nombreuses années, je vulgarise la physique quantique, mon domaine de recherche. La « quantique » fascine le grand public. Elle intimide aussi. Les vulgarisateurs en jouent d’ailleurs parfois. Les couvertures de revues et de livres exploitent souvent son côté mystérieux : « L’ultime secret de la physique quantique enfin dévoilé », « La vie serait quantique ! », « On pense tous quantique »… Tout cela n’est pas sans conséquence. De nombreuses fausses idées se propagent sur ce domaine de la physique. Je vous en propose sept parmi celles que j’entends le plus souvent, sept idées qui entretiennent des mythes mais ne résistent pas à l’épreuve des faits.

Rassurez-vous, pas besoin de s’y connaître en physique quantique pour lire ce qui suit, puisque je vous dirai plutôt ce que la quantique… n’est pas !

1. « La quantique, c’est le monde de l’incertitude »

C’est faux ! La physique quantique est actuellement probablement la discipline scientifique la plus précise que l’humanité ait jamais conçue. Elle est capable de prévoir certaines propriétés avec une précision de 10 chiffres après la virgule, ensuite vérifiée par l’expérience précisément ! C’est le cas par exemple des mesures de constante de structure fine, ou d’effet Hall quantique. À titre de comparaison, cela reviendrait à être capable, lors d’une épreuve de saut en longueur, de prévoir en observant juste la course et l’élan d’un athlète où il va atterrir au milliardième de mètre près !

https://images.theconversation.com/files/266577/original/file-20190329-71006-1t0qjm2.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=237&fit=clip

Le principe d’incertitude. Margaux Khalil, Janet Rafner, coll., _La physique autrement_

Cette fausse idée vient entre autres du « principe d’incertitude » d’Heisenberg, une notion souvent mal vulgarisée qui laisse penser à tort que la quantique n’est pas précise. Ce principe, qu’Heisenberg lui-même préférait appeler « principe d’indétermination », montre qu’il existe une limite à la précision de la mesure de deux quantités en même temps, par exemple la vitesse et la position d’une particule. Sans rentrer dans les détails, cette indétermination vient un peu de la même raison qui fait qu’il est difficile de dire précisément où se trouve une vague dans la mer, vu qu’elle est forcément un peu étalée. Mais si on utilise la physique quantique pour calculer d’autres quantités, comme l’énergie des atomes, ou leur magnétisme, elle est alors d’une redoutable précision. Il faut juste bien choisir ce que l’on veut prédire.

2. « Pas possible de représenter la quantique en images »

La physique quantique décrit des objets souvent « bizarres » et difficiles à illustrer : fonctions d’onde, superpositions d’état, probabilités de présence, nombres complexes… Souvent, on entend dire qu’ils ne sont compréhensibles qu’avec des équations et des symboles mathématiques. Pourtant, dés qu’on l’enseigne ou qu’on la vulgarise, nous, physiciens, n’avons de cesse de la représenter, à l’aide de courbes, de tracés, de métaphores, de projections… C’est bien simple : je ne connais pas de cours de quantique sans images. Certains livres sont même entièrement consacrés à la mise en image de la quantique. Et heureusement, car les images sont nécessaires à l’étudiant et même au physicien aguerri pour se faire une représentation mentale des objets qu’il manipule. Si l’on interroge les chercheurs du domaine, ils reconnaissent eux-mêmes « imaginer » la matière quantique.

https://images.theconversation.com/files/266578/original/file-20190329-71003-pvh7ft.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=754&fit=clip

Les pliages permettent d’imaginer ce que pourrait être les particules quantiques. Pliages quantiques, Cyril Conton, coll., _La physique autrement_

Le point qui fait débat, c’est la rigueur de ces images : il est en effet difficile de représenter rigoureusement un objet quantique. Mais n’est-ce pas le cas dans bien des champs de la science ? Une image d’atomes par un microscope à effet tunnel n’est qu’une représentation du courant tunnel impliquant de nombreux choix arbitraires, les couleurs, les ombres, etc..

Dans notre équipe de recherche « La physique autrement », nous travaillons justement à cette question de la représentation. Nous travaillons avec des designers, des illustrateurs, des vidéastes, pour « dessiner » la quantique sous toutes ses formes : pliages, bande-dessinées, sculptures, animations 3D… À titre d’exemple, nous avons conçu une série de petites animations qui peuplent maintenant les articles de Wikipédia, les conférences et les cours, alors qu’elles ne sont pas totalement rigoureuses. Mais elles donnent à voir au grand public quelques effets clé : dualité, superposition, quantification… et produisent donc bien des images de quantique.

https://images.theconversation.com/files/266579/original/file-20190329-70999-d294xq.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=754&fit=clip

Un bel objet pour imaginer une fonction d’onde quantique. Paul Morin, coll., ENSCI-Les Ateliers et _La physique autrement_

3. « Les scientifiques eux-mêmes ne comprennent pas bien la quantique »

Richard Feynman, un des plus grands noms du domaine, n’a-t-il pas dit lui-même : « Je pense pouvoir dire sans trop me tromper que personne ne comprend la mécanique quantique » ? Mais il ajoute juste après : « Je vais vous dire comment la nature se comporte ». Tout est dans le « comment » : Feynman comprend très bien « comment » la quantique fonctionne, il a même eu un prix Nobel pour cela, mais pas le « pourquoi ». Et pour la quantique, ce « comment » est particulièrement surprenant pour tout physicien habitué à la mécanique classique. Niels Bohr, un des pères fondateurs du domaine, résume bien la situation : « Quiconque n’est pas choqué par la théorie quantique ne la comprend pas. »

Les physiciens comprennent donc ce qu’ils font quand ils manipulent le formalisme quantique. Ils doivent juste « adapter » leurs intuitions à ce nouveau champ et à ses paradoxes. Ce n’est d’ailleurs pas spécifique à la quantique. L’électromagnétisme au XIXe siècle a dû chambouler bien des scientifiques, quand il leur a fallu admettre qu’ils baignaient dans des ondes invisibles se propageant comme la lumière, faites d’électricité et de magnétisme. Même histoire avec la courbure de l’espace-temps de la relativité générale.

4. « La quantique a été conçue de toutes pièces par quelques théoriciens géniaux »

Toute l’histoire de la physique démontre l’inverse : au tout départ, il n’y a pas une théorie brillante jaillie du cerveau d’un physicien, mais plutôt des expériences menées en laboratoire qui présentent des résultats inattendus. Puis, et seulement ensuite, des théoriciens se penchent sur ces résultats, cherchent à les comprendre, et vont mettre en place de nouveaux concepts, utiliser de nouveaux outils…

La physique quantique n’échappe pas à la règle : au tout départ, il y a quelques expériences qu’on ne comprend pas, l’effet photoélectrique, le rayonnement du corps noir, le spectre lumineux des atomes. Puis viennent les théoriciens géniaux, Albert Einstein, Max Planck, Niels Bohr, qui comprennent que ces expériences révèlent en fait la nature quantique de la lumière et de l’atome. Puis encore quelques expériences fondamentales, des électrons qui rebondissent bizarrement sur du nickel, des atomes d’argent étrangement déviés par un champ magnétique, un métal qui conduit parfaitement à basse température… Et ensuite à nouveau des théories et des concepts, la dualité, le spin, la supraconductivité.

La physique se construit dans cet aller-retour fertile entre expérimentateurs et théoriciens, et les expériences viennent souvent en premier, sauf rares exceptions (par exemple la prédiction de l’antimatière ou du boson de Higgs). Dans un petit livre que je viens d’écrire, « Mon grand mécano quantique », je raconte ainsi onze de ces expériences clés de l’histoire de la quantique, et comment elles ont suscité des avancées théoriques majeures comme la supraconductivité, découverte en 1911 mais comprise seulement en 1957 !

https://images.theconversation.com/files/266576/original/file-20190329-71006-ysg816.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=754&fit=clip

L’invention de la supraconductivité. Crédits : Petites histoires quantiques, Marine Joumard, coll., _La physique autrement_

5. « Einstein a été le pire ennemi de la quantique »

Pauvre Einstein ! On l’affuble souvent du rôle d’opposant acharné de la quantique. Sa célèbre phrase Gott würfelt nicht (« Dieu ne joue pas aux dés ») y est pour beaucoup. Pourtant, non seulement Einstein n’est pas opposé à la quantique, mais mieux : il en est à l’origine ! C’est en 1905, suite aux travaux de Max Planck, qu’il écrit un article fondateur. Il y propose que la lumière est composée de petits corps individuels et quantifiés, les photons. Il recevra même le prix Nobel pour ce travail et non pour sa théorie de la relativité. Ce n’est pas tout. Einstein a écrit plusieurs autres articles majeurs en quantique, par exemple la prédiction de la condensation de Bose-Einstein, ou l’idée de l’émission stimulée qui permettra l’invention des lasers.

Alors pourquoi cette réputation ? Tout vient des débats qu’il a eu avec Niels Bohr, notamment sur la notion d’interprétation et de réalité quantique. La quantique décrit-elle vraiment le monde réel, qui serait alors intrinsèquement probabiliste ? N’y aurait-il pas des variables cachées qui permettraient de mieux comprendre certains des plus grands paradoxes de la quantique ? Ces passionnants débats vont culminer avec un article qu’il écrit en 1935 avec Podolsky et Rosen où il réfute l’idée de non-localité. Plus tard, des expériences d’intrication et de violation des égalités de Bell lui donneront tort et montreront l’absence de variables cachées : Dieu semble finalement bien jouer aux dés… Gardons juste en tête qu’Einstein reconnaissait pleinement la pertinence de la physique quantique pour décrire le monde à petite échelle, qu’il admirait la justesse de ses prédictions, mais qu’il avait juste des soucis avec certaines de ses implications, notamment liées à la notion de localité.

6. « La quantique ne sert à rien »

Comme toute recherche fondamentale, la physique quantique n’a pas à se « justifier » d’être utile. Comprendre comment fonctionne le monde à l’échelle de l’atome a été, à mon avis, une des plus grandes conquêtes de l’esprit humain, même si cela ne devait finalement servir à rien ! Mais rassurez-vous, la quantique est probablement la discipline la plus utile de la physique moderne. Car une fois que les physiciens ont compris le fonctionnement de la lumière, des atomes et des électrons, ils ont été capables les manipuler. Ils sont ainsi passés du stade de la compréhension à celui de l’invention. Le laser est souvent cité comme magnifique exemple d’invention quantique. Mais il n’est pas seul : l’IRM dans les hôpitaux, les diodes électroluminescentes (LED), les mémoires flash, les disques durs, tous ont été inventés par des physiciens de la quantique.

https://images.theconversation.com/files/266575/original/file-20190329-70993-3xtq5r.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=754&fit=clip

Les lasers, les trains à lévitation, ou l’IRM, des applications de la physique quantique. Mon grand mécano quantique, Marine Joumard, Ed. Flammarion

Mieux encore, le transistor, ce petit composant qui se niche dans tous les microprocesseurs au cœur de vos smartphones et ordinateurs préférés, ce transistor à l’origine de la révolution numérique a été inventé par trois physiciens de la quantique, William Shockley, John Bardeen et Walter Brattain. Et de nombreux chercheurs et ingénieurs travaillent à concevoir aujourd’hui, en laboratoire, les inventions quantiques du futur, comme les ordinateurs quantiques, mais aussi de nouvelles cellules photovoltaïques, des composants thermoélectriques, de nouvelles sources de lumière ou de nouvelles méthodes pour les télécommunications.

7. « La quantique pourrait expliquer certaines médecines alternatives ou autres phénomènes mystérieux »

De nombreuses croyances en des phénomènes paranormaux ou en certaines « médecines » se réclament ou s’inspirent de la physique quantique. Un des plus célèbres défenseurs de cette approche, l’indo-américain Deepak Chopra, a développé une sorte de mysticisme quantique, où il utilise tout un jargon scientifique pour justifier d’une sorte de spiritualité New Age, à coup de « champs énergétiques », « d’onde de probabilité », de « réharmonisation énergétique », ou de « dualité ». Tout cela l’amène à supposer certains liens quantiques entre pensée, conscience, matière et univers.

De même, des « médecines quantiques » proposent des soins en envisageant le corps comme un « champ vibratoire et énergétique », siège d’« états vibratoires » ou bien de « bio-résonances ». Ces « médecines » proposent à la vente tout un appareillage aux noms savants pour « corriger les déséquilibres énergétiques », voire mesurer les « biofeedbacks ».

Deux procédés malhonnêtes sont ici à l’œuvre. D’abord, « faire scientifique », c’est-à-dire légitimer son discours avec des termes scientifiques. Ces pseudosciences exploitent le fait que la quantique semble mystérieuse afin d’expliquer d’autres « mystères ». Mais, nous venons de le montrer, la quantique n’est pas mystérieuse. Elle est vérifiée par l’expérience non seulement en laboratoire mais aussi dans notre quotidien, à l’œuvre quand on allume une prise électrique ou qu’on utilise son smartphone. Alors qu’aucun des phénomènes décrits par ces médecines ou croyances n’a de base scientifique ou n’a pu être vérifié scientifiquement. Et surtout, les mots ont un sens très précis en physique quantique qui n’a rien à voir avec leur emploi abusif dans ces pseudosciences.

Une autre tricherie consiste à extrapoler à notre échelle les propriétés quantiques. Après tout, notre corps est bien composé d’atomes, qui, eux, sont quantiques, alors pourquoi pas ? Soyons clairs : les propriétés quantiques comme la superposition d’état ou la quantification cessent à notre échelle. On a été capable ces dernières années de le démontrer en laboratoire, grâce à des expériences menées entre autres par Serge Haroche récompensé par le prix Nobel en 2012. Les physiciens ont montré que dès qu’un objet interagit trop avec son environnement et qu’il est trop gros, il cesse d’être quantique. À notre échelle, les « objets » comme le cerveau humain sont donc tout simplement trop volumineux, nos températures terrestres trop élevées, sans compter l’air qui nous entoure, pour qu’un être humain puisse présenter un comportement quantique.

Je ne veux pas pour autant me poser en une sorte de censeur moralisateur qui déciderait le vrai du faux du haut de sa science. Je ne condamne ni ne juge ceux qui veulent tester ces pratiques. Elles relèvent du champ de la croyance, non de la science, et libre à chacun de s’y adonner. Je demande juste d’arrêter de faire croire qu’elles s’appuient sur des bases scientifiques issues de la physique quantique, car c’est tout simplement faux.

Voilà. J’espère, avec cette petite liste, avoir un peu démystifié la physique quantique, un champ scientifique finalement… comme les autres !

Pour en savoir plus - Et si la réalité objective n’existait pas ?

Article de Nathalie Mayer, publié le 19 novembre 2019

Pour la plupart d’entre nous, un fait est un fait. Il peut être prouvé et correspond à une réalité objective unique. Mais le monde de la physique quantique s’apprête une fois de plus à ébranler nos certitudes. Ses lois particulières autoriseraient la coexistence de plusieurs réalités différentes.

«  Vous avez droit à votre opinion, mais pas à vos propres faits.  » C’est ce qu’avait déclaré à l’occasion d’une conférence de presse en fin d’année dernière, Paul Romer, prix Nobel d’économie 2018 pour ses travaux sur les vertus et les nuisances de l’activité économique sur le climat. Mais aujourd’hui, des chercheurs de l’université d’Édimbourg (Écosse) viennent remettre en cause cette affirmation. Selon eux, il existerait plus d’un seul monde objectif. D’un point de vue quantique, tout du moins.

Rappelons au préalable que la méthode scientifique repose par principe sur des observations et sur des mesures reproductibles. Un fait scientifique ne peut ainsi être qu’objectif et accepté par tous les observateurs. Car, dans notre monde, lorsqu’il arrive quelque chose, il arrive indéniablement quelque chose !

« Dans le monde quantique, les observateurs jouissent d’un grand pouvoir »

Rappelons qu’en revanche, dans le monde quantique, les observateurs jouissent d’un grand pouvoir. Il est en effet admis que le simple fait d’observer un système quantique provoque une sorte d’effondrement vers un état spécifique. Ainsi, une particule qui, selon la théorie, peut se trouver dans plusieurs états à la fois — les chercheurs parlent de superposition — choisit instantanément son camp dès qu’elle est observée.

L’expérience du chat de Schrödinger montre le pouvoir de l’observateur dans le monde quantique. Le chat en question, pris au piège dans une pièce fermée, doit en effet être considéré comme à la fois mort et vivant jusqu’à ce qu’il puisse être observé dans l’un ou l’autre de ces états. © Sonsedskaya, Adobe Stock 

Un ordinateur quantique et des photons pour démonter la réalité

En 1961, le physicien Eugène Wigner imagina une expérience de pensée intéressante. Il se demanda ce qu’il adviendrait si un observateur était lui-même observé. Dans une pièce fermée, un ami de Wigner effectue une mesure quantique. À l’extérieur de cette pièce, Wigner n’a pas accès au résultat de la mesure. Il en est réduit à décrire son ami et le système mesuré comme une superposition de tous les états possibles. Car les deux sont enchevêtrés. D’où le paradoxe. La réalité perçue par Wigner et son ami est différente. Pour en donner un exemple « concret », l’ami de Wigner saura si le chat de Schrödinger est mort ou vivant alors que pour Wigner, il restera à la fois mort et vivant.

Cette expérience de l’existence, dans l’univers quantique, de deux réalités objectives, a aujourd’hui pu être testée par les physiciens de l’université d’Édimbourg grâce à un ordinateur quantique constitué de trois paires de photons intriqués. Sur le principe proposé par Caslav Brukner, chercheur à l’université de Vienne (Autriche), de considérer deux couples « Wigner et son ami », les amis en question étant placés dans deux pièces différentes. La première paire de photons tient ainsi la place du système quantique mesuré. La deuxième paire figure les amis de Wigner et la troisième paire, enfin, les deux versions de Wigner lui-même.

Il aura fallu aux physiciens des semaines entières pour collecter suffisamment de données et arriver à la conclusion suivante : l’état du système mesuré par plusieurs observateurs peut être différent et ainsi, la mécanique quantique peut être incompatible avec la notion de faits objectifs. Mais ils soulignent toutefois que cette conclusion repose sur quelques hypothèses qui restent possiblement à valider. Comme le fait qu’un photon puisse être considéré comme un observateur.

Intéressé par ce que vous venez de lire ? Abonnez-vous à la lettre d’information La quotidienne : nos dernières actualités du jour. Toutes nos lettres d’information

Haut du formulaire

Bas du formulaire

Haut du formulaire

Bas du formulaire

Liens externes

L’article scientifique (en anglais)

A strong no-go theorem on the Wigner’s friend paradox

https://images.theconversation.com/files/266582/original/file-20190329-71009-q94674.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=754&fit=clipUne équation qui questionne. Physiciens des solides, Chloé Passavant, coll., _La physique autrement_

Mots clefs : Prix Nobel science technologies physique Albert Einstein physique quantique vulgarisation scientifique

Avant que vous ne partiez... Pour prendre du recul et réfléchir sur l’actualité, faites un don et devenez adhérent·e de ‘The Conversation France’. L’équipe de ‘The Conversation France’

The Conversation : des analyses de l’actualité par des ...theconversation.com › ... –« Edité par des journalistes expérimentés, The Conversation offre des analyses ... Université Paris-Est Créteil Val de Marne (UPEC) et Marie-France Morin, ...

Fichier:The Conversation logo.png — Wikipédia

Source : https://theconversation.com/sept-idees-fausses-sur-la-physique-quantique-113517

Selon Wikpéda, « The Conversation est un média indépendant en ligne et sans but lucratif, qui propose du contenu provenant de la communauté universitaire. Depuis le lancement du premier site australien en mars 2011, huit versions sont apparues. The Conversation Media Group, la société d’exploitation, est une fondation d’éducation à but non lucratif détenue par The Conversation Trust… » - Article complet à lire sur ce site : https://fr.wikipedia.org/wiki/The_Conversation_(m%C3%A9dia)

Retour au contenu de la documentation sur la physique quantique

Retour au début du dossier


Transmis avec des compléments ajoutés par Jacques HALLARD, Ingénieur CNAM, consultant indépendant – 03/09/2020

Site ISIAS = Introduire les Sciences et les Intégrer dans des Alternatives Sociétales

http://www.isias.lautre.net/

Adresse : 585 Chemin du Malpas 13940 Mollégès France

Courriel : jacques.hallard921@orange.fr

Fichier : ISIAS Physique quantique Et si la vie obéissait à la Physique Quantique.2

Mis en ligne par Pascal Paquin de Yonne Lautre, un site d’information, associatif et solidaire(Vie du site & Liens), un site inter-associatif, coopératif, gratuit, sans publicité, indépendant de tout parti.

http://yonnelautre.fr/local/cache-vignettes/L160xH109/arton1769-a3646.jpg?1510324931

— -